To LUGNET HomepageTo LUGNET News HomepageTo LUGNET Guide Homepage
 Help on Searching
 
Post new message to lugnet.robotics.rcx.nqcOpen lugnet.robotics.rcx.nqc in your NNTP NewsreaderTo LUGNET News Traffic PageSign In (Members)
 Robotics / RCX / NQC / 927
926  |  928
Subject: 
Minimum Spanning Tree
Newsgroups: 
lugnet.robotics.rcx.nqc
Date: 
Sat, 27 Jan 2001 12:42:30 GMT
Reply-To: 
ash@jadzia-dax#spamless#.de
Viewed: 
2710 times
  
Hi,
I have got a problem with a program I wrote, and I can't find the error.
My intention was to have the program calculate a minimum spanning tree
on basis of Kruskals algorithm, which most of you are familiar with, I
presume. The program expects input of the following structure:
1-----2
| \ / |
|--3--|
| / \ |
4-----5

This is the graph in question. The user input consists only of the edge
weights. The edges are ordered like this: Egde 1: Connects Vertex 1-2,
Edge 2: Connects Vertex 1-3, Edge 3: Connects Vertex 1-4, Edge 4:
Connects Vertex 2-3, and so on. By pressing the button on Sensor_1 x
times, the user gives an input of weight x to the respective edge. Then,
when every edge has its weight, the programm calculates the MST and
beeps x times for every edge x it has used. Unfortunately, the beeps I
get are nonsense. Can anybody spot an error I fail to see? The program
is quoted here:

int Length[8], Edges[8], Edges2[4], Set[5], Node[2], CounterLength = 1,
Counter2Length = 0, TempLength = 0, TempLength2 = 1;
task main(){
  SetSensor (SENSOR_1, SENSOR_TOUCH);
  SetSensor (SENSOR_2, SENSOR_TOUCH);
  until(CounterLength == 9){                              //Input of 8
edges at the whole
   Edges[CounterLength] = CounterLength;
//Reference-edgecount
   if(SENSOR_1 == 1){                                     //Input of
length by user
    Length[CounterLength] = (Length[CounterLength] + 1);  //Length of
current edge
    PlayTone(440,25);                                     //Verification
    Wait(25);}
   if(SENSOR_2 == 1){                                     //Next edge
    CounterLength = ++CounterLength;
    PlayTone(220,25);
    Wait(25);}}
  CounterLength = 0;
//CounterLength now becomes a standard counter.

  until(CounterLength == 9){                              //This
algorithm sorts the edges in increasing order.
   ++CounterLength;                                       //It is, of
course, quite primitive.
   until(Counter2Length == 9){                            //Every edge
is compared to the other edges, and,
    ++Counter2Length;                                     //if
necessary, swapped.
    if(Length[CounterLength] > Length[Counter2Length]){
     TempLength = Length[CounterLength];
     Length[CounterLength] = Length[Counter2Length];
     Length[Counter2Length] = TempLength;
     TempLength = Edges[CounterLength];                   //If so, the
reference edge-count is swapped, too
     Edges[CounterLength] = Edges[Counter2Length];
     Edges[Counter2Length] = TempLength;}}}

  TempLength = 1;                                         //Every vertex
now gets its own set.
  until(TempLength == 6){
   Set[TempLength] = TempLength;
   ++TempLength;}
  TempLength = 0;
  CounterLength = 1;
  until(TempLength == 9){                                 //For every
edge, check if it forms a circle with other edges.
   ++TempLength;                                          //Not very
elegant, as I defined the two nodes of every edge by hand.
    switch(Edges[TempLength]){
    case 1:
    Node[1] = Set[1];
    Node[2] = Set[2];
    break;
    case 2:
    Node[1] = Set[1];
    Node[2] = Set[3];
    break;
    case 3:
    Node[1] = Set[1];
    Node[2] = Set[4];
    break;
    case 4:
    Node[1] = Set[2];
    Node[2] = Set[3];
    break;
    case 5:
    Node[1] = Set[2];
    Node[2] = Set[5];
    break;
    case 6:
    Node[1] = Set[3];
    Node[2] = Set[4];
    break;
    case 7:
    Node[1] = Set[3];
    Node[2] = Set[5];
    break;
    case 8:
    Node[1] = Set[4];
    Node[2] = Set[5];
    break;}

   if(Node[1] < Node[2]){                                 //The checked
two vertices V1 and V2 are only connected if Set[V1] = Set[V2]
    Edges2[CounterLength] = Edges[TempLength];            //This line
saves every edge
    ++CounterLength;
    TempLength2 = 1;                                      //Node[V1] and
Node[V2] are only temporary containers for these sets mentioned above.
    until(TempLength2 == 6){
     if(Set[TempLength2] == Node[2])                      //Update the
sets to keep this invariant intact.
     Set[TempLength2] = Node[1];                          //The set
representative is the smallest number contained in the set, and it
     ++TempLength2;}}                                     //is also the
only valued saved in Set[x]}
   if(Node[1] > Node[2]){
    Edges2[CounterLength] = Edges[TempLength];
    ++CounterLength;
    TempLength2 = 1;
    until(TempLength2 == 6){
     if(Set[TempLength2] == Node[1])
     Set[TempLength2] = Node[2];
     ++TempLength2;}}}

  TempLength = 1;                                         //Beep x times
for edge no. x
  until(TempLength == 5){
   repeat(Edges2[TempLength]){
    PlayTone(440,25);
    Wait(35);}
   PlayTone(220,25);
   Wait(35);
   until(SENSOR_2 == 1);
   ++TempLength;}}


--
TIE: Andi S.



1 Message in This Thread:

Entire Thread on One Page:
Nested:  All | Brief | Compact | Dots
Linear:  All | Brief | Compact
    

Custom Search

©2005 LUGNET. All rights reserved. - hosted by steinbruch.info GbR