To LUGNET HomepageTo LUGNET News HomepageTo LUGNET Guide Homepage
 Help on Searching
 
Post new message to lugnet.cad.dat.partsOpen lugnet.cad.dat.parts in your NNTP NewsreaderTo LUGNET News Traffic PageSign In (Members)
 CAD / LDraw Files / Parts / 2243
2242  |  2244
Special: 
[DAT] (requires LDraw-compatible viewer)
Subject: 
Soccer Ball - plain DAT code
Newsgroups: 
lugnet.cad.dat.parts
Date: 
Tue, 9 Jan 2001 18:11:30 GMT
Viewed: 
749 times
  
Here's the soccer ball, with the GDL converted to standard LDraw.  No LDL or
MPD. I also just realized that there are no conditional lines between the
facets.  Oops.  They shouldn't be too hard to add, but I'd start with the
LDL code I posted a little while ago, it would be easier to work with.

--
Steve


0 Minifig Soccer Ball
0 Name: soccer.dat
0 Author: Matthew Verdier, Geometry
0 Author: Steve Bliss, DAT code
0 Unofficial Element

0 CATEGORY Minifig Accessory
0 KEYWORDS football, sphere, truncated icosohedron
0 BFC CERTIFY CW

0 Edge-level 0 (Pentagon through 1-Vertices)
2 24 0 6.1794 16.9059 5.8765 1.9097 16.9059
2 24 5.8765 1.9097 16.9059 3.6319 -4.999 16.9059
2 24 3.6319 -4.999 16.9059 -3.6319 -4.999 16.9059
2 24 -3.6319 -4.999 16.9059 -5.8765 1.9097 16.9059
2 24 -5.8765 1.9097 16.9059 0 6.1794 16.9059
0 Edge-level 1 (Connect 1-Vertices to 2-Vertices, one-to-one)
2 24 0 6.1794 16.9059 0 12.358 13.0873
2 24 5.8765 1.9097 16.9059 11.7529 3.8186 13.0873
2 24 3.6319 -4.999 16.9059 7.2639 -9.998 13.0873
2 24 -3.6319 -4.999 16.9059 -7.2639 -9.998 13.0873
2 24 -5.8765 1.9097 16.9059 -11.7529 3.8186 13.0873
0 Edge-level 2 (Connect 2-Vertices to 3-Vertices, one-to-two)
2 24 0 12.358 13.0873 -5.8765 14.2677 9.2687
2 24 0 12.358 13.0873 5.8765 14.2677 9.2687
2 24 11.7529 3.8186 13.0873 11.7529 9.998 9.2687
2 24 11.7529 3.8186 13.0873 15.3849 -1.1804 9.2687
2 24 7.2639 -9.998 13.0873 13.1403 -8.0883 9.2687
2 24 7.2639 -9.998 13.0873 3.6319 -14.997 9.2687
2 24 -7.2639 -9.998 13.0873 -3.6319 -14.997 9.2687
2 24 -7.2639 -9.998 13.0873 -13.1403 -8.0883 9.2687
2 24 -11.7529 3.8186 13.0873 -15.3849 -1.1804 9.2687
2 24 -11.7529 3.8186 13.0873 -11.7529 9.998 9.2687
0 Edge-level 3 (Connect pairs of 3-Vertices, completing first hex-band)
2 24 5.8765 14.2677 9.2687 11.7529 9.998 9.2687
2 24 15.3849 -1.1804 9.2687 13.1403 -8.0883 9.2687
2 24 3.6319 -14.997 9.2687 -3.6319 -14.997 9.2687
2 24 -13.1403 -8.0883 9.2687 -15.3849 -1.1804 9.2687
2 24 -11.7529 9.998 9.2687 -5.8765 14.2677 9.2687
0 Edge-level 4 (Connect 3-Vertices to 4-Vertices, one-to-one)
2 24 -5.8765 14.2677 9.2687 -3.6319 17.357 3.0893
2 24 5.8765 14.2677 9.2687 3.6319 17.357 3.0893
2 24 11.7529 9.998 9.2687 15.3849 8.8176 3.0893
2 24 15.3849 -1.1804 9.2687 17.6301 1.9097 3.0893
2 24 13.1403 -8.0883 9.2687 13.1403 -11.9069 3.0893
2 24 3.6319 -14.997 9.2687 7.2639 -16.1766 3.0893
2 24 -3.6319 -14.997 9.2687 -7.2639 -16.1766 3.0893
2 24 -13.1403 -8.0883 9.2687 -13.1403 -11.9069 3.0893
2 24 -15.3849 -1.1804 9.2687 -17.6301 1.9097 3.0893
2 24 -11.7529 9.998 9.2687 -15.3849 8.8176 3.0893
0 Edge-level 5 (Connect pairs of 4-Vertices, completing 1st band of pentagons))
2 24 -3.6319 17.357 3.0893 3.6319 17.357 3.0893
2 24 15.3849 8.8176 3.0893 17.6301 1.9097 3.0893
2 24 13.1403 -11.9069 3.0893 7.2639 -16.1766 3.0893
2 24 -7.2639 -16.1766 3.0893 -13.1403 -11.9069 3.0893
2 24 -17.6301 1.9097 3.0893 -15.3849 8.8176 3.0893
0 Edge-level 6 (Connect 4-Vertices to 5-Vertices, crossing the equator)
2 24 -3.6319 17.357 3.0893 -7.2639 16.1766 -3.0893
2 24 3.6319 17.357 3.0893 7.2639 16.1766 -3.0893
2 24 15.3849 8.8176 3.0893 13.1403 11.9069 -3.0893
2 24 17.6301 1.9097 3.0893 17.6301 -1.9097 -3.0893
2 24 13.1403 -11.9069 3.0893 15.3849 -8.8176 -3.0893
2 24 7.2639 -16.1766 3.0893 3.6319 -17.357 -3.0893
2 24 -7.2639 -16.1766 3.0893 -3.6319 -17.357 -3.0893
2 24 -13.1403 -11.9069 3.0893 -15.3849 -8.8176 -3.0893
2 24 -17.6301 1.9097 3.0893 -17.6301 -1.9097 -3.0893
2 24 -15.3849 8.8176 3.0893 -13.1403 11.9069 -3.0893
0 Edge-level 7 (Connect pairs of 5-Vertices, completing 2nd hex-course)
2 24 7.2639 16.1766 -3.0893 13.1403 11.9069 -3.0893
2 24 17.6301 -1.9097 -3.0893 15.3849 -8.8176 -3.0893
2 24 3.6319 -17.357 -3.0893 -3.6319 -17.357 -3.0893
2 24 -15.3849 -8.8176 -3.0893 -17.6301 -1.9097 -3.0893
2 24 -13.1403 11.9069 -3.0893 -7.2639 16.1766 -3.0893
0 Edge-level 8 (Connect 5-Vertices to 6-Vertices, one-to-one)
2 24 -7.2639 16.1766 -3.0893 -3.6319 14.997 -9.2687
2 24 7.2639 16.1766 -3.0893 3.6319 14.997 -9.2687
2 24 13.1403 11.9069 -3.0893 13.1403 8.0883 -9.2687
2 24 17.6301 -1.9097 -3.0893 15.3849 1.1804 -9.2687
2 24 15.3849 -8.8176 -3.0893 11.7529 -9.998 -9.2687
2 24 3.6319 -17.357 -3.0893 5.8765 -14.2677 -9.2687
2 24 -3.6319 -17.357 -3.0893 -5.8765 -14.2677 -9.2687
2 24 -15.3849 -8.8176 -3.0893 -11.7529 -9.998 -9.2687
2 24 -17.6301 -1.9097 -3.0893 -15.3849 1.1804 -9.2687
2 24 -13.1403 11.9069 -3.0893 -13.1403 8.0883 -9.2687
0 Edge-level 9 (Connect pairs of 6-Vertices, completing 3rd hex-course)
2 24 -3.6319 14.997 -9.2687 3.6319 14.997 -9.2687
2 24 13.1403 8.0883 -9.2687 15.3849 1.1804 -9.2687
2 24 11.7529 -9.998 -9.2687 5.8765 -14.2677 -9.2687
2 24 -5.8765 -14.2677 -9.2687 -11.7529 -9.998 -9.2687
2 24 -15.3849 1.1804 -9.2687 -13.1403 8.0883 -9.2687
0 Edge-level 10 (Connect 6-Vertices to 7-Vertices, two-to-one,
0                completing 2nd pent-course)
2 24 -3.6319 14.997 -9.2687 -7.2639 9.998 -13.0873
2 24 3.6319 14.997 -9.2687 7.2639 9.998 -13.0873
2 24 13.1403 8.0883 -9.2687 7.2639 9.998 -13.0873
2 24 15.3849 1.1804 -9.2687 11.7529 -3.8186 -13.0873
2 24 11.7529 -9.998 -9.2687 11.7529 -3.8186 -13.0873
2 24 5.8765 -14.2677 -9.2687 0 -12.358 -13.0873
2 24 -5.8765 -14.2677 -9.2687 0 -12.358 -13.0873
2 24 -11.7529 -9.998 -9.2687 -11.7529 -3.8186 -13.0873
2 24 -15.3849 1.1804 -9.2687 -11.7529 -3.8186 -13.0873
2 24 -13.1403 8.0883 -9.2687 -7.2639 9.998 -13.0873
0 Edge-level 11 (Connect 7-Vertices to 8-Vertices, one-to-one)
2 24 7.2639 9.998 -13.0873 3.6319 4.999 -16.9059
2 24 11.7529 -3.8186 -13.0873 5.8765 -1.9097 -16.9059
2 24 0 -12.358 -13.0873 0 -6.1794 -16.9059
2 24 -11.7529 -3.8186 -13.0873 -5.8765 -1.9097 -16.9059
2 24 -7.2639 9.998 -13.0873 -3.6319 4.999 -16.9059
0 Edge-level 12 (Final pentagon through 8-Vertices)
2 24 3.6319 4.999 -16.9059 5.8765 -1.9097 -16.9059
2 24 5.8765 -1.9097 -16.9059 0 -6.1794 -16.9059
2 24 0 -6.1794 -16.9059 -5.8765 -1.9097 -16.9059
2 24 -5.8765 -1.9097 -16.9059 -3.6319 4.999 -16.9059
2 24 -3.6319 4.999 -16.9059 3.6319 4.999 -16.9059
0 First Pentagon
3 0 0 6.1794 16.9059 5.8765 1.9097 16.9059 0 0 16.9059
3 0 5.8765 1.9097 16.9059 3.6319 -4.999 16.9059 0 0 16.9059
3 0 3.6319 -4.999 16.9059 -3.6319 -4.999 16.9059 0 0 16.9059
3 0 -3.6319 -4.999 16.9059 -5.8765 1.9097 16.9059 0 0 16.9059
3 0 -5.8765 1.9097 16.9059 0 6.1794 16.9059 0 0 16.9059
0 First course of hexagons
0 15 A0 A1 B1 C1a C0b B0
3 16 6.4227 8.8401 14.304 5.8765 1.9097 16.9059 0 6.1794 16.9059
3 16 6.4227 8.8401 14.304 11.7529 3.8186 13.0873 5.8765 1.9097 16.9059
3 16 6.4227 8.8401 14.304 11.7529 9.998 9.2687 11.7529 3.8186 13.0873
3 16 6.4227 8.8401 14.304 5.8765 14.2677 9.2687 11.7529 9.998 9.2687
3 16 6.4227 8.8401 14.304 0 12.358 13.0873 5.8765 14.2677 9.2687
3 16 6.4227 8.8401 14.304 0 6.1794 16.9059 0 12.358 13.0873
0 15 A1 A2 B2 C2a C1b B1
3 16 10.3924 -3.377 14.304 3.6319 -4.999 16.9059 5.8765 1.9097 16.9059
3 16 10.3924 -3.377 14.304 7.2639 -9.998 13.0873 3.6319 -4.999 16.9059
3 16 10.3924 -3.377 14.304 13.1403 -8.0883 9.2687 7.2639 -9.998 13.0873
3 16 10.3924 -3.377 14.304 15.3849 -1.1804 9.2687 13.1403 -8.0883 9.2687
3 16 10.3924 -3.377 14.304 11.7529 3.8186 13.0873 15.3849 -1.1804 9.2687
3 16 10.3924 -3.377 14.304 5.8765 1.9097 16.9059 11.7529 3.8186 13.0873
0 15 A2 A3 B3 C3a C2b B2
3 16 0 -10.927 14.304 -3.6319 -4.999 16.9059 3.6319 -4.999 16.9059
3 16 0 -10.927 14.304 -7.2639 -9.998 13.0873 -3.6319 -4.999 16.9059
3 16 0 -10.927 14.304 -3.6319 -14.997 9.2687 -7.2639 -9.998 13.0873
3 16 0 -10.927 14.304 3.6319 -14.997 9.2687 -3.6319 -14.997 9.2687
3 16 0 -10.927 14.304 7.2639 -9.998 13.0873 3.6319 -14.997 9.2687
3 16 0 -10.927 14.304 3.6319 -4.999 16.9059 7.2639 -9.998 13.0873
0 15 A3 A4 B4 C4a C3b B3
3 16 -10.3924 -3.377 14.304 -5.8765 1.9097 16.9059 -3.6319 -4.999 16.9059
3 16 -10.3924 -3.377 14.304 -11.7529 3.8186 13.0873 -5.8765 1.9097 16.9059
3 16 -10.3924 -3.377 14.304 -15.3849 -1.1804 9.2687 -11.7529 3.8186 13.0873
3 16 -10.3924 -3.377 14.304 -13.1403 -8.0883 9.2687 -15.3849 -1.1804 9.2687
3 16 -10.3924 -3.377 14.304 -7.2639 -9.998 13.0873 -13.1403 -8.0883 9.2687
3 16 -10.3924 -3.377 14.304 -3.6319 -4.999 16.9059 -7.2639 -9.998 13.0873
0 15 A4 A0 B0 C0a C4b B4
3 16 -6.4227 8.8401 14.304 0 6.1794 16.9059 -5.8765 1.9097 16.9059
3 16 -6.4227 8.8401 14.304 0 12.358 13.0873 0 6.1794 16.9059
3 16 -6.4227 8.8401 14.304 -5.8765 14.2677 9.2687 0 12.358 13.0873
3 16 -6.4227 8.8401 14.304 -11.7529 9.998 9.2687 -5.8765 14.2677 9.2687
3 16 -6.4227 8.8401 14.304 -11.7529 3.8186 13.0873 -11.7529 9.998 9.2687
3 16 -6.4227 8.8401 14.304 -5.8765 1.9097 16.9059 -11.7529 3.8186 13.0873
0 First course of pentagons
0 3 0 B0 C0b D0b D0a C0a
3 0 0 16.0996 8.0498 5.8765 14.2677 9.2687 0 12.358 13.0873
3 0 0 16.0996 8.0498 3.6319 17.357 3.0893 5.8765 14.2677 9.2687
3 0 0 16.0996 8.0498 -3.6319 17.357 3.0893 3.6319 17.357 3.0893
3 0 0 16.0996 8.0498 -5.8765 14.2677 9.2687 -3.6319 17.357 3.0893
3 0 0 16.0996 8.0498 0 12.358 13.0873 -5.8765 14.2677 9.2687
0 3 0 B1 C1b D1b D1a C1a
3 0 15.3115 4.975 8.0498 15.3849 -1.1804 9.2687 11.7529 3.8186 13.0873
3 0 15.3115 4.975 8.0498 17.6301 1.9097 3.0893 15.3849 -1.1804 9.2687
3 0 15.3115 4.975 8.0498 15.3849 8.8176 3.0893 17.6301 1.9097 3.0893
3 0 15.3115 4.975 8.0498 11.7529 9.998 9.2687 15.3849 8.8176 3.0893
3 0 15.3115 4.975 8.0498 11.7529 3.8186 13.0873 11.7529 9.998 9.2687
0 3 0 B2 C2b D2b D2a C2a
3 0 9.4634 -13.0248 8.0498 3.6319 -14.997 9.2687 7.2639 -9.998 13.0873
3 0 9.4634 -13.0248 8.0498 7.2639 -16.1766 3.0893 3.6319 -14.997 9.2687
3 0 9.4634 -13.0248 8.0498 13.1403 -11.9069 3.0893 7.2639 -16.1766 3.0893
3 0 9.4634 -13.0248 8.0498 13.1403 -8.0883 9.2687 13.1403 -11.9069 3.0893
3 0 9.4634 -13.0248 8.0498 7.2639 -9.998 13.0873 13.1403 -8.0883 9.2687
0 3 0 B3 C3b D3b D3a C3a
3 0 -9.4634 -13.0248 8.0498 -13.1403 -8.0883 9.2687 -7.2639 -9.998 13.0873
3 0 -9.4634 -13.0248 8.0498 -13.1403 -11.9069 3.0893 -13.1403 -8.0883 9.2687
3 0 -9.4634 -13.0248 8.0498 -7.2639 -16.1766 3.0893 -13.1403 -11.9069 3.0893
3 0 -9.4634 -13.0248 8.0498 -3.6319 -14.997 9.2687 -7.2639 -16.1766 3.0893
3 0 -9.4634 -13.0248 8.0498 -7.2639 -9.998 13.0873 -3.6319 -14.997 9.2687
0 3 0 B4 C4b D4b D4a C4a
3 0 -15.3115 4.975 8.0498 -11.7529 9.998 9.2687 -11.7529 3.8186 13.0873
3 0 -15.3115 4.975 8.0498 -15.3849 8.8176 3.0893 -11.7529 9.998 9.2687
3 0 -15.3115 4.975 8.0498 -17.6301 1.9097 3.0893 -15.3849 8.8176 3.0893
3 0 -15.3115 4.975 8.0498 -15.3849 -1.1804 9.2687 -17.6301 1.9097 3.0893
3 0 -15.3115 4.975 8.0498 -11.7529 3.8186 13.0873 -15.3849 -1.1804 9.2687
0 Second course of hexagons
3 16 13.1403 11.9069 -3.0893 15.3849 8.8176 3.0893 11.7529 9.998 9.2687
3 16 10.3924 14.304 3.377 15.3849 8.8176 3.0893 11.7529 9.998 9.2687
3 16 10.3924 14.304 3.377 13.1403 11.9069 -3.0893 15.3849 8.8176 3.0893
3 16 10.3924 14.304 3.377 7.2639 16.1766 -3.0893 13.1403 11.9069 -3.0893
3 16 10.3924 14.304 3.377 3.6319 17.357 3.0893 7.2639 16.1766 -3.0893
3 16 10.3924 14.304 3.377 5.8765 14.2677 9.2687 3.6319 17.357 3.0893
3 16 10.3924 14.304 3.377 11.7529 9.998 9.2687 5.8765 14.2677 9.2687
3 16 15.3849 -8.8176 -3.0893 13.1403 -11.9069 3.0893 13.1403 -8.0883 9.2687
3 16 16.8151 -5.4639 3.377 13.1403 -11.9069 3.0893 13.1403 -8.0883 9.2687
3 16 16.8151 -5.4639 3.377 15.3849 -8.8176 -3.0893 13.1403 -11.9069 3.0893
3 16 16.8151 -5.4639 3.377 17.6301 -1.9097 -3.0893 15.3849 -8.8176 -3.0893
3 16 16.8151 -5.4639 3.377 17.6301 1.9097 3.0893 17.6301 -1.9097 -3.0893
3 16 16.8151 -5.4639 3.377 15.3849 -1.1804 9.2687 17.6301 1.9097 3.0893
3 16 16.8151 -5.4639 3.377 13.1403 -8.0883 9.2687 15.3849 -1.1804 9.2687
3 16 -3.6319 -17.357 -3.0893 -7.2639 -16.1766 3.0893 -3.6319 -14.997 9.2687
3 16 0 -17.6803 3.377 -7.2639 -16.1766 3.0893 -3.6319 -14.997 9.2687
3 16 0 -17.6803 3.377 -3.6319 -17.357 -3.0893 -7.2639 -16.1766 3.0893
3 16 0 -17.6803 3.377 3.6319 -17.357 -3.0893 -3.6319 -17.357 -3.0893
3 16 0 -17.6803 3.377 7.2639 -16.1766 3.0893 3.6319 -17.357 -3.0893
3 16 0 -17.6803 3.377 3.6319 -14.997 9.2687 7.2639 -16.1766 3.0893
3 16 0 -17.6803 3.377 -3.6319 -14.997 9.2687 3.6319 -14.997 9.2687
3 16 -17.6301 -1.9097 -3.0893 -17.6301 1.9097 3.0893 -15.3849 -1.1804 9.2687
3 16 -16.8151 -5.4639 3.377 -17.6301 1.9097 3.0893 -15.3849 -1.1804 9.2687
3 16 -16.8151 -5.4639 3.377 -17.6301 -1.9097 -3.0893 -17.6301 1.9097 3.0893
3 16 -16.8151 -5.4639 3.377 -15.3849 -8.8176 -3.0893 -17.6301 -1.9097 -3.0893
3 16 -16.8151 -5.4639 3.377 -13.1403 -11.9069 3.0893 -15.3849 -8.8176 -3.0893
3 16 -16.8151 -5.4639 3.377 -13.1403 -8.0883 9.2687 -13.1403 -11.9069 3.0893
3 16 -16.8151 -5.4639 3.377 -15.3849 -1.1804 9.2687 -13.1403 -8.0883 9.2687
0 15 C0a D0a E0a E4b D4b C4b
3 16 -10.3924 14.304 3.377 -3.6319 17.357 3.0893 -5.8765 14.2677 9.2687
3 16 -10.3924 14.304 3.377 -7.2639 16.1766 -3.0893 -3.6319 17.357 3.0893
3 16 -10.3924 14.304 3.377 -13.1403 11.9069 -3.0893 -7.2639 16.1766 -3.0893
3 16 -10.3924 14.304 3.377 -15.3849 8.8176 3.0893 -13.1403 11.9069 -3.0893
3 16 -10.3924 14.304 3.377 -11.7529 9.998 9.2687 -15.3849 8.8176 3.0893
3 16 -10.3924 14.304 3.377 -5.8765 14.2677 9.2687 -11.7529 9.998 9.2687
0 3rd course of hexagons
0 14 D0b E0b F0b F0a E0a D0a
3 16 0 17.6803 -3.377 7.2639 16.1766 -3.0893 3.6319 17.357 3.0893
3 16 0 17.6803 -3.377 3.6319 14.997 -9.2687 7.2639 16.1766 -3.0893
3 16 0 17.6803 -3.377 -3.6319 14.997 -9.2687 3.6319 14.997 -9.2687
3 16 0 17.6803 -3.377 -7.2639 16.1766 -3.0893 -3.6319 14.997 -9.2687
3 16 0 17.6803 -3.377 -3.6319 17.357 3.0893 -7.2639 16.1766 -3.0893
3 16 0 17.6803 -3.377 3.6319 17.357 3.0893 -3.6319 17.357 3.0893
0 14 D1b E1b F1b F1a E1a D1a
3 16 16.8151 5.4639 -3.377 17.6301 -1.9097 -3.0893 17.6301 1.9097 3.0893
3 16 16.8151 5.4639 -3.377 15.3849 1.1804 -9.2687 17.6301 -1.9097 -3.0893
3 16 16.8151 5.4639 -3.377 13.1403 8.0883 -9.2687 15.3849 1.1804 -9.2687
3 16 16.8151 5.4639 -3.377 13.1403 11.9069 -3.0893 13.1403 8.0883 -9.2687
3 16 16.8151 5.4639 -3.377 15.3849 8.8176 3.0893 13.1403 11.9069 -3.0893
3 16 16.8151 5.4639 -3.377 17.6301 1.9097 3.0893 15.3849 8.8176 3.0893
0 14 D2b E2b F2b F2a E2a D2a
3 16 10.3924 -14.304 -3.377 3.6319 -17.357 -3.0893 7.2639 -16.1766 3.0893
3 16 10.3924 -14.304 -3.377 5.8765 -14.2677 -9.2687 3.6319 -17.357 -3.0893
3 16 10.3924 -14.304 -3.377 11.7529 -9.998 -9.2687 5.8765 -14.2677 -9.2687
3 16 10.3924 -14.304 -3.377 15.3849 -8.8176 -3.0893 11.7529 -9.998 -9.2687
3 16 10.3924 -14.304 -3.377 13.1403 -11.9069 3.0893 15.3849 -8.8176 -3.0893
3 16 10.3924 -14.304 -3.377 7.2639 -16.1766 3.0893 13.1403 -11.9069 3.0893
0 14 D3b E3b F3b F3a E3a D3a
3 16 -10.3924 -14.304 -3.377 -15.3849 -8.8176 -3.0893 -13.1403 -11.9069 3.0893
3 16 -10.3924 -14.304 -3.377 -11.7529 -9.998 -9.2687 -15.3849 -8.8176 -3.0893
3 16 -10.3924 -14.304 -3.377 -5.8765 -14.2677 -9.2687 -11.7529 -9.998 -9.2687
3 16 -10.3924 -14.304 -3.377 -3.6319 -17.357 -3.0893 -5.8765 -14.2677 -9.2687
3 16 -10.3924 -14.304 -3.377 -7.2639 -16.1766 3.0893 -3.6319 -17.357 -3.0893
3 16 -10.3924 -14.304 -3.377 -13.1403 -11.9069 3.0893 -7.2639 -16.1766 3.0893
0 14 D4b E4b F4b F4a E4a D4a
3 16 -16.8151 5.4639 -3.377 -13.1403 11.9069 -3.0893 -15.3849 8.8176 3.0893
3 16 -16.8151 5.4639 -3.377 -13.1403 8.0883 -9.2687 -13.1403 11.9069 -3.0893
3 16 -16.8151 5.4639 -3.377 -15.3849 1.1804 -9.2687 -13.1403 8.0883 -9.2687
3 16 -16.8151 5.4639 -3.377 -17.6301 -1.9097 -3.0893 -15.3849 1.1804 -9.2687
3 16 -16.8151 5.4639 -3.377 -17.6301 1.9097 3.0893 -17.6301 -1.9097 -3.0893
3 16 -16.8151 5.4639 -3.377 -15.3849 8.8176 3.0893 -17.6301 1.9097 3.0893
0 Second course of pentagons
0 0 E0b F0b G0 F1a E1a
3 0 7.2639 16.1766 -3.0893 3.6319 14.997 -9.2687 9.4634 13.0248 -8.0498
3 0 3.6319 14.997 -9.2687 7.2639 9.998 -13.0873 9.4634 13.0248 -8.0498
3 0 7.2639 9.998 -13.0873 13.1403 8.0883 -9.2687 9.4634 13.0248 -8.0498
3 0 13.1403 8.0883 -9.2687 13.1403 11.9069 -3.0893 9.4634 13.0248 -8.0498
3 0 13.1403 11.9069 -3.0893 7.2639 16.1766 -3.0893 9.4634 13.0248 -8.0498
0 0 E1b F1b G1 F2a E2a
3 0 17.6301 -1.9097 -3.0893 15.3849 1.1804 -9.2687 15.3115 -4.975 -8.0498
3 0 15.3849 1.1804 -9.2687 11.7529 -3.8186 -13.0873 15.3115 -4.975 -8.0498
3 0 11.7529 -3.8186 -13.0873 11.7529 -9.998 -9.2687 15.3115 -4.975 -8.0498
3 0 11.7529 -9.998 -9.2687 15.3849 -8.8176 -3.0893 15.3115 -4.975 -8.0498
3 0 15.3849 -8.8176 -3.0893 17.6301 -1.9097 -3.0893 15.3115 -4.975 -8.0498
0 0 E2b F2b G2 F3a E3a
3 0 3.6319 -17.357 -3.0893 5.8765 -14.2677 -9.2687 0 -16.0996 -8.0498
3 0 5.8765 -14.2677 -9.2687 0 -12.358 -13.0873 0 -16.0996 -8.0498
3 0 0 -12.358 -13.0873 -5.8765 -14.2677 -9.2687 0 -16.0996 -8.0498
3 0 -5.8765 -14.2677 -9.2687 -3.6319 -17.357 -3.0893 0 -16.0996 -8.0498
3 0 -3.6319 -17.357 -3.0893 3.6319 -17.357 -3.0893 0 -16.0996 -8.0498
0 0 E3b F3b G3 F4a E4a
3 0 -15.3849 -8.8176 -3.0893 -11.7529 -9.998 -9.2687 -15.3115 -4.975 -8.0498
3 0 -11.7529 -9.998 -9.2687 -11.7529 -3.8186 -13.0873 -15.3115 -4.975 -8.0498
3 0 -11.7529 -3.8186 -13.0873 -15.3849 1.1804 -9.2687 -15.3115 -4.975 -8.0498
3 0 -15.3849 1.1804 -9.2687 -17.6301 -1.9097 -3.0893 -15.3115 -4.975 -8.0498
3 0 -17.6301 -1.9097 -3.0893 -15.3849 -8.8176 -3.0893 -15.3115 -4.975 -8.0498
0 0 E4b F4b G4 F0a E0a
3 0 -13.1403 11.9069 -3.0893 -13.1403 8.0883 -9.2687 -12.4285 10.3852 -7.8537
3 0 -13.1403 8.0883 -9.2687 -7.2639 9.998 -13.0873 -12.4285 10.3852 -7.8537
3 0 -7.2639 9.998 -13.0873 -3.6319 14.997 -9.2687 -12.4285 10.3852 -7.8537
3 0 -3.6319 14.997 -9.2687 -7.2639 16.1766 -3.0893 -12.4285 10.3852 -7.8537
3 0 -7.2639 16.1766 -3.0893 -13.1403 11.9069 -3.0893 -12.4285 10.3852 -7.8537
0 4th course of hexagons
0 15 F0b G0 H0 H4 G4 F0a
3 16 0 10.927 -14.304 7.2639 9.998 -13.0873 3.6319 14.997 -9.2687
3 16 0 10.927 -14.304 3.6319 4.999 -16.9059 7.2639 9.998 -13.0873
3 16 0 10.927 -14.304 -3.6319 4.999 -16.9059 3.6319 4.999 -16.9059
3 16 0 10.927 -14.304 -7.2639 9.998 -13.0873 -3.6319 4.999 -16.9059
3 16 0 10.927 -14.304 -3.6319 14.997 -9.2687 -7.2639 9.998 -13.0873
3 16 0 10.927 -14.304 3.6319 14.997 -9.2687 -3.6319 14.997 -9.2687
0 15 F1b G1 H1 H0 G0 F1a
3 16 10.3924 3.377 -14.304 11.7529 -3.8186 -13.0873 15.3849 1.1804 -9.2687
3 16 10.3924 3.377 -14.304 5.8765 -1.9097 -16.9059 11.7529 -3.8186 -13.0873
3 16 10.3924 3.377 -14.304 3.6319 4.999 -16.9059 5.8765 -1.9097 -16.9059
3 16 10.3924 3.377 -14.304 7.2639 9.998 -13.0873 3.6319 4.999 -16.9059
3 16 10.3924 3.377 -14.304 13.1403 8.0883 -9.2687 7.2639 9.998 -13.0873
3 16 10.3924 3.377 -14.304 15.3849 1.1804 -9.2687 13.1403 8.0883 -9.2687
0 15 F2b G2 H2 H1 G1 F2a
3 16 6.4227 -8.8401 -14.304 0 -12.358 -13.0873 5.8765 -14.2677 -9.2687
3 16 6.4227 -8.8401 -14.304 0 -6.1794 -16.9059 0 -12.358 -13.0873
3 16 6.4227 -8.8401 -14.304 5.8765 -1.9097 -16.9059 0 -6.1794 -16.9059
3 16 6.4227 -8.8401 -14.304 11.7529 -3.8186 -13.0873 5.8765 -1.9097 -16.9059
3 16 6.4227 -8.8401 -14.304 11.7529 -9.998 -9.2687 11.7529 -3.8186 -13.0873
3 16 6.4227 -8.8401 -14.304 5.8765 -14.2677 -9.2687 11.7529 -9.998 -9.2687
0 15 F3b G3 H3 H2 G2 F3a
3 16 -6.4227 -8.8401 -14.304 -11.7529 -3.8186 -13.0873 -11.7529 -9.998 -9.2687
3 16 -6.4227 -8.8401 -14.304 -5.8765 -1.9097 -16.9059 -11.7529 -3.8186 -13.0873
3 16 -6.4227 -8.8401 -14.304 0 -6.1794 -16.9059 -5.8765 -1.9097 -16.9059
3 16 -6.4227 -8.8401 -14.304 0 -12.358 -13.0873 0 -6.1794 -16.9059
3 16 -6.4227 -8.8401 -14.304 -5.8765 -14.2677 -9.2687 0 -12.358 -13.0873
3 16 -6.4227 -8.8401 -14.304 -11.7529 -9.998 -9.2687 -5.8765 -14.2677 -9.2687
0 15 F4b G4 H4 H3 G3 F4a
3 16 -10.3924 3.377 -14.304 -7.2639 9.998 -13.0873 -13.1403 8.0883 -9.2687
3 16 -10.3924 3.377 -14.304 -3.6319 4.999 -16.9059 -7.2639 9.998 -13.0873
3 16 -10.3924 3.377 -14.304 -5.8765 -1.9097 -16.9059 -3.6319 4.999 -16.9059
3 16 -10.3924 3.377 -14.304 -11.7529 -3.8186 -13.0873 -5.8765 -1.9097 -16.9059
3 16 -10.3924 3.377 -14.304 -15.3849 1.1804 -9.2687 -11.7529 -3.8186 -13.0873
3 16 -10.3924 3.377 -14.304 -13.1403 8.0883 -9.2687 -15.3849 1.1804 -9.2687
0 Final Pentagon
3 0 0 0 -17.9999 5.8765 -1.9097 -16.9059 3.6319 4.999 -16.9059
3 0 0 0 -17.9999 0 -6.1794 -16.9059 5.8765 -1.9097 -16.9059
3 0 0 0 -17.9999 -5.8765 -1.9097 -16.9059 0 -6.1794 -16.9059
3 0 0 0 -17.9999 -3.6319 4.999 -16.9059 -5.8765 -1.9097 -16.9059
3 0 0 0 -17.9999 3.6319 4.999 -16.9059 -3.6319 4.999 -16.9059
0



Message has 1 Reply:
  Re: Soccer Ball - plain DAT code
 
(...) Thanks, Steve. I'll play around with it and see what happens. Also, just wondering, but is there any way to model a net in MLCad? One last thing: I have not looked at your file yet, but what i did was i put the Primitve 4-8SPHE.DAT into my (...) (24 years ago, 9-Jan-01, to lugnet.cad.dat.parts)

Message is in Reply To:
  Soccer Ball - working code
 
Here is an MPD with LDLite code for a soccer ball. The LDLite language extensions allowed me to generate and use the exact values for the vertices more easily than raw LDraw code. Because of the language, I *think* only LDLite (and probably LDGLite) (...) (24 years ago, 9-Jan-01, to lugnet.cad.dat.parts)

5 Messages in This Thread:


Entire Thread on One Page:
Nested:  All | Brief | Compact | Dots
Linear:  All | Brief | Compact

This Message and its Replies on One Page:
Nested:  All | Brief | Compact | Dots
Linear:  All | Brief | Compact
    

Custom Search

©2005 LUGNET. All rights reserved. - hosted by steinbruch.info GbR